Vectors for a rectangle shape

  • \( \overrightarrow{OA} \) and \( \overrightarrow{OC} \) are always parallel.
  • \( \overrightarrow{DA} \) is always perpendicular to \( \overrightarrow{AB} \), \( \overrightarrow{AB} \) is always perpendicular to \( \overrightarrow{BC} \), \( \overrightarrow{BC} \) is perpendicular to \( \overrightarrow{CD} \) and \( \overrightarrow{CD} \) is perpendicular to \( \overrightarrow{DA} \).
  • \( \overrightarrow{OA} \cdot \overrightarrow{AB} \), \( \overrightarrow{AB} \cdot \overrightarrow{BC} \), \( \overrightarrow{BC} \cdot \overrightarrow{CD} \), \( \overrightarrow{CD} \cdot \overrightarrow{DA} \) all equal to 0.
  • Diagonals intersect at \( \frac{1}{2} \overrightarrow{OB} \) or \( \frac{1}{2} \overrightarrow{AD} \).
    \( |\overrightarrow{OA}| = |\overrightarrow{OC}| \)
    \( |\overrightarrow{AB}| = |\overrightarrow{CD}| \)
Mobirise Website Builder

Vectors for a trapezium

  • \( \overrightarrow{AB} \) is perpendicular to \( \overrightarrow{BC} \) and \( \overrightarrow{AD} \).
  • \( \overrightarrow{AB} \cdot \overrightarrow{BC} \) and \( \overrightarrow{AB} \cdot \overrightarrow{AD} = 0 \)
  • \( \overrightarrow{AB} = k\overrightarrow{CD} \)
  • Finding the intersection point of the diagonals is tricky. We have to create line equations for both diagonals and use that to determine where the lines intersect.
Mobirise Website Builder

Finding intersection of diagonals


\( \overrightarrow{OA} = \begin{pmatrix} 2\\ 1 \\ -3 \end{pmatrix} \), \( \overrightarrow{OB} = \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix} \), \( \overrightarrow{OC} = \begin{pmatrix} -3 \\ -2 \\ 1 \end{pmatrix} \), \( \overrightarrow{OD} = \begin{pmatrix} 3 \\ -11 \\ -10 \end{pmatrix} \)

\( \overrightarrow{AC} = \overrightarrow{AO} + \overrightarrow{OC} = \begin{pmatrix} -2\\ -1 \\ 3 \end{pmatrix} + \begin{pmatrix} -3\\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} -5\\ -3 \\ 5 \end{pmatrix}\)

\( \overrightarrow{BD} = \overrightarrow{BO} + \overrightarrow{OD} = \begin{pmatrix} 0\\ -4 \\ -1 \end{pmatrix} + \begin{pmatrix} 3\\ -11 \\ -10 \end{pmatrix} = \begin{pmatrix} 3\\ -15 \\ -11 \end{pmatrix}\)

line \( \overrightarrow{AC} = \begin{pmatrix} 2\\ 1 \\-3 \end{pmatrix} + x \begin{pmatrix} -5\\ -3 \\ 5\end{pmatrix} \)

line \( \overrightarrow{BD} = \begin{pmatrix} 0 \\4 \\ 1 \end{pmatrix} + y \begin{pmatrix} -3 \\ -15 \\ -11 \end{pmatrix} \)

$$\begin{pmatrix} 0 \\ 4 \\ 7 \end{pmatrix} + y \begin{pmatrix} 3 \\ -15 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ -15 \\ -11 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} + x \begin{pmatrix} -3 \\ -5 \\ 1 \{
\end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ 7 \end{pmatrix} + y \begin{pmatrix} 3 \\ -15 \\ -11 \end{pmatrix}$$

$$\begin{pmatrix} 2 - 3x \\ 1 - 5x \\ -3 + x \end{pmatrix} = \begin{pmatrix} 3y \\ 4 - 15y \\ 7 - 11y \end{pmatrix}$$

2 - 3x = 3y
1 - 5x = 4 - 15y

Equation 1: 3x + 3y = 2
Equation 2: 5x - 15y = -3


Solving the simultaneous linear equations we get:
\( x = \frac{1}{4}, y = \frac{2}{3} \)

Position vector of diagonal intersection = \( \begin{pmatrix} 2 - 3(\frac{1}{4}) \\ 1 - 5(\frac{1}{4}) \\ -3 + (\frac{1}{4}) \end{pmatrix} = \begin{pmatrix} \frac{5}{4} \\ -\frac{1}{4} \\ -\frac{11}{4} \end{pmatrix} \)


Finding the angles between diagonals
[This is unrelated to finding the intersection between diagonals. However, I added this here as it is a rather important part of the syllabus]

\( \vec{AC} \cdot \vec{BD} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix} = 2(0) + 1(4) + (-3)(1) = 2 \)

\( |\vec{AC}| = \sqrt{2^2 + 1^2 + (-3)^2} = \sqrt{14} \)

\( |\vec{BD}| = \sqrt{0^2 + 4^2 + 1^2} = \sqrt{17} \)

\( \vec{AC} \cdot \vec{BD} = |\vec{AC}| |\vec{BD}| \cos \theta \)

\( 2 = \sqrt{14} \sqrt{17} \cos \theta \)

\( \theta = \cos^{-1} \left( \frac{2}{\sqrt{14} \sqrt{17}} \right) = 82.6^\circ \)